Morphological Characteristics and Spatial Distribution of Seagrass at Batu Kotak Beach, Central Lombok
Published:
2025-08-31Issue:
Vol. 1 No. 2 (2025): AugustKeywords:
Seagrass morphology, coastal ecosystem, spatial distributionArticles
Downloads
How to Cite
Abstract
Seagrass ecosystems play an important role in coastal ecology, but their presence requires systematic monitoring in the Mandalika coastal area. This study aims to identify the morphological characteristics and spatial distribution of seagrass species along the coast of Batu Kotak, Central Lombok, Indonesia. The research method used quadrat transects placed perpendicular to the shoreline. The results showed three dominant species including Thalassia hemprichii, Syringodium isoetifolium, and Cymodocea rotundata. T. hemprichii forms dense grasslands in shallow lagoons, while S. isoetifolium shows high tolerance to physical disturbances such as waves, and C. rotundata is adaptive to diverse substrates and currents. It was concluded that the differences in morphology and special distribution reflect the specific ecological response of each species to its environment. The results of the study are expected to inform long-term monitoring, habitat restoration, conservation planning, as well as assessing ecological dynamics and anthropogenic impacts affecting seagrass habitats in coastal tourism areas.
References
Arriesgado, D. M., Kurokochi, H., Arriesgado, E. M., Roa, E. C., Gonzales, R. C., Bucay, D. M., Roa, L. L., Balaba, M. P., & Lian, C. (2023). Clonal diversity and recruitment strategy of the two dominant seagrass species Cymodocea rotundata and Enhalus acoroides in the southern Philippines. Aquatic Botany, 187, 103646. DOI: https://doi.org/10.1016/j.aquabot.2023.103646
Bartolini, F., Pergent-Martini, C., Mateo, M. A., & Boudouresque, C. F. (2024). Advances in seagrass ecology: Monitoring, methods, and management. Marine Ecology Progress Series, 729(2), 115–130. https://doi.org/10.3354/meps14629
Carter, A. B., Johnson, C. R., & Kendrick, G. A. (2021). Morphological traits of seagrass as indicators of ecosystem condition. Ecological Indicators, 126, 107690. https://doi.org/10.1016/j.ecolind.2021.107690
Charpy-Roubaud, C., Boucher, G., & Bouvy, M. (2022). Contribution of the seagrass Syringodium isoetifolium to benthic metabolism in a tropical reef lagoon. Frontiers in Marine Science, 9, 867986. https://doi.org/10.3389/fmars.2022.867986
Douglas, J., Niner, H., & Garrard, S. (2024). Impacts of Marine Plastic Pollution on Seagrass Meadows and Ecosystem Services in Southeast Asia. Journal of Marine Science and Engineering, 12(12), 2314. https://doi.org/10.3390/jmse12122314
Fitriya, N., Syafruddin, M., & Santoso, A. (2020). Kondisi ekosistem lamun dan faktor lingkungan perairan pesisir Indonesia. Jurnal Kelautan Tropis, 23(1), 45–56. https://doi.org/10.14710/jkt.v23i1.7891
Hamid, L., Yusuf, M., & Hasanah, U. (2021). Degradasi ekosistem lamun akibat aktivitas antropogenik di wilayah pesisir. Jurnal Ilmu Kelautan, 26(2), 117–128. https://doi.org/10.14710/jik.v26i2.11002
Heck, K. L., Orth, R. J., & Valentine, J. F. (2024). Seagrass response to nitrogen enrichment. Marine Pollution Bulletin, 185, 114567. https://doi.org/10.1016/j.marpolbul.2024.114567
Hidayat, A., Zamroni, Y., & Rahman, I. (2022). Status ekosistem lamun di kawasan wisata pesisir Mandalika, Nusa Tenggara Barat. Jurnal Biologi Tropis, 22(3), 233–242. https://doi.org/10.29303/jbt.v22i3.1003
Kindeberg, T., Ward, M., & Tu, T. (2024). Structural complexity and benthic metabolism: carbon cycling and biodiversity. Biogeosciences, 21, 1685–1700. https://doi.org/10.5194/bg-21-1685-2024
Latuconsina, H., Rahman, I., & Damayanti, A. (2021). Struktur komunitas lamun dan hubungan dengan kualitas perairan di wilayah pesisir Indonesia. Jurnal Oseanografi, 10(2), 87–96. https://doi.org/10.14710/jo.v10i2.5678
Lee, S. Y., Kim, J. H., & Park, S. R. (2022). Genetic diversity of Cymodocea spp. Regional Studies in Marine Science, 53, 102123. https://doi.org/10.1016/j.rsma.2022.102123
Lefcheck, J. S., Orth, R. J., & McGlathery, K. J. (2022). Standardized approaches to seagrass monitoring and restoration success. Frontiers in Marine Science, 9, 874321. https://doi.org/10.3389/fmars.2022.874321
Li, J., Wang, M., & Zhao, L. (2023). Restoration performance of Thalassia hemprichii and Enhalus acoroides in degraded seagrass beds. Frontiers in Marine Science, 10, 1294779. https://doi.org/10.3389/fmars.2023.1294779
Nadiarti, R., Nurhidayah, S., & Damayanti, A. (2022). Potensi ekosistem lamun sebagai penyedia jasa ekosistem pesisir. Biosfera, 39(1), 15–26. https://doi.org/10.20884/1.bio.2022.39.1.1234
Nguyen, T. H., Pham, V. D., & Tran, Q. T. (2022). The influence of seagrass and its associated sediment on organic carbon storage. Marine Pollution Bulletin, 180, 113834. https://doi.org/10.1016/j.marpolbul.2022.113834
Noviana, A., Rahmawati, E., & Putri, D. (2021). Pemetaan distribusi spasial lamun di perairan tropis Indonesia. Jurnal Kelautan dan Perikanan, 16(2), 203–214. https://doi.org/10.15578/jkp.v16i2.765
Nurhidayah, S., Rahman, I., & Damayanti, A. (2021). Kondisi ekosistem lamun di kawasan wisata Mandalika, NTB. Jurnal Kelautan Tropis, 24(1), 51–61. https://doi.org/10.14710/jkt.v24i1.832
Putra, A. P., Sari, D. P., & Nugroho, D. (2025). Seagrass community at Menjangan Island, Bali. BIO Web of Conferences, 65, 01008. https://doi.org/10.1051/bioconf/20256501008
Rahmawati, E., Lestari, D. P., & Damayanti, A. (2020). Analisis spasial ekosistem lamun untuk mendukung pengelolaan pesisir berkelanjutan. Jurnal Ilmu Lingkungan, 18(3), 321–332. https://doi.org/10.14710/jil.v18i3.876
Ravaglioli, C., Marchi, M., & Gattuso, J. P. (2024). Ocean acidification impairs seagrass performance under thermal stress. Marine Environmental Research, 180, 105678. https://doi.org/10.1016/j.marenvres.2024.105678
Scott, A. L., York, P. H., Duncan, C., Macreadie, P. I., Connolly, R. M., Ellis, M. T., Jarvis. J. C., Jinks, K. I., Marsh, H., & Rasheed, M. A. (2018). The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. Frontiers in Plant Science, 9, 127. https://doi.org/10.3389/fpls.2018.00127
Shi, Z., Shi, Y., Zhao, M., Wang, K., Ma, S., & Han, Q. (2025). Thalassia hemprichii may benefit from ocean acidification and slightly increased salinity. Marine Environmental Research, 205, 107000. https://doi.org/10.1016/j.marenvres.2025.107000
Smith, D. R., Johnson, M. T., & Nguyen, T. T. (2024). Complete chloroplast genome of Cymodocea rotundata. Mitochondrial DNA Part B, 9(1), 2432370. https://doi.org/10.1080/23802359.2024.2432370
Unsworth, R. K. F., Cullen-Unsworth, L. C., & Jones, B. L. (2019). Seagrass Meadows and Their Role in the Carbon Cycle. Frontiers in Marine Science, 6, 1–10. https://doi.org/10.3389/fmars.2019.00101
Wang, Y., Li, X., & Zhang, Q. (2023). Seagrass Thalassia hemprichii and associated bacteria co-respond to ocean warming and acidification. Environmental Research, 224, 115439. https://doi.org/10.1016/j.envres.2023.115439
Waycott, M., Collier, C. J., McMahon, K., Ralph, P. J., McKenzie, L. J., Udy, J. W., & Williams, S. L. (2020). Human impacts on seagrass ecosystems: Resilience, restoration, and management. Biological Conservation, 252, 108861. https://doi.org/10.1016/j.biocon.2020.108861.
Zhang, L., Chen, Y., & Liu, H. (2023). Sand supplementation favors tropical seagrass Thalassia hemprichii growth and resilience. BMC Plant Biology, 23, 47. https://doi.org/10.1186/s12870-022-03647-0
Author Biographies
Novia Intan Cahyani Cahyani, Universitas Mataram
Windiarti Pratiwi Putri, University Mataram
Lalu Syukran Muhsin, University Mataram
Ratna Permata Sari, University Mataram
Maulana David Prayoga, University Mataram
Febrisa Indri Utami, Universitas Kyungsung
License
Copyright (c) 2025 Novia Intan Cahyani cahyani, Windiarti Pratiwi Putri, Lalu Syukran Muhsin, Ratna Permata Sari, Maulana David Prayoga, Febrisa Indri Utami

This work is licensed under a Creative Commons Attribution 4.0 International License.









