Effects of Light Spectrum Variation on Biomass Development of Caulerpa lentillifera

Pengaruh Variasi Spektrum Cahaya terhadap Perkembangan Biomassa Caulerpa lentillifera

Authors

Muhammad Prananda , Alis Muhklis , Sahrul Alim

DOI:

10.65622/ijtb.v1i3.147

Published:

2025-12-17

Issue:

Vol. 1 No. 3 (2025): December 2025

Keywords:

Biomass growth, Caulerpa lentillifera, Light spectrum, Macroalgae

Articles

Downloads

How to Cite

Prananda, M., Muhklis, A., & Alim, S. (2025). Effects of Light Spectrum Variation on Biomass Development of Caulerpa lentillifera: Pengaruh Variasi Spektrum Cahaya terhadap Perkembangan Biomassa Caulerpa lentillifera. Indonesian Journal of Tropical Biology, 1(3), 156–162. https://doi.org/10.65622/ijtb.v1i3.147

Abstract

Light spectrum plays a crucial role in photosynthesis and biomass development of marine macroalgae. This study aimed to evaluate the effects of different light spectra on biomass development of Caulerpa lentillifera in controlled cultivation systems. Four LED light treatments (white, red, yellow, and green spectra at 3000 lux intensity) were applied using a completely randomized design with three replications over 30 days. Growth parameters including absolute growth, relative growth, specific growth rate (SGR), and biomass residue were measured at 10-day intervals. Results showed that red light produced the highest absolute growth (0.107±0.004 mg), relative growth (2.39±0.15%), and SGR (0.237±0.015% day⁻¹), followed by white light (0.101±0.015 mg, 2.26±0.34%, 0.224±0.034% day⁻¹). All treatments exhibited biphasic growth patterns with peak biomass on day 10, followed by progressive decline. White light maintained the highest biomass residue (64.4±23.3%), while green light showed the lowest performance across all parameters (39.3±3.7%). The superior growth under red light is attributed to optimal absorption by photosystem II at 680 nm wavelength. This study recommends red light for maximizing short-term biomass production and white light for maintaining long-term stability in C. lentillifera cultivation systems.

References

Antara, K. L., Fadjar, M., & Setijawati, D. (2022). Analisis Pertumbuhan Caulerpa lentifera yang Terintegrasi dengan Budidaya Haliotis squamata. Buletin Oseanografi Marina, 11(3), 347–357. https://doi.org/10.14710/buloma.v11i3.47685

Badan Pusat Statistik [BPS]. (2024). Statistik Sumber Daya Laut dan Pesisir 2024 - Pengelolaan Sumber Daya Laut untuk Pembangunan Berkelanjutan dan Kesejahteraan Masyarakat di Wilayah, Vol. 21, Badan Pusat Statistik. Jakarta. https://www.bps.go.id/en/publication/2024/11/29/d622648a533da3bc907e8b3a/statistik-sumber-daya-laut-dan-pesisir-2024.html

Blankenship, R. E. (2008). Molecular Mechanisms of Photosynthesis. In Molecular Mechanisms of Photosynthesis. Wiley. https://doi.org/10.1002/9780470758472

Bonomi Barufi, J., Figueroa, F. L., & Plastino, E. M. (2015). Effects of light quality on reproduction, growth and pigment content of Gracilaria birdiae (Rhodophyta: Gracilariales). Scientia Marina, 79(1), 15–24. https://doi.org/10.3989/scimar.04049.12a

Brodersen, C. R., Vogelmann, T. C., Williams, W. E., & Gorton, H. L. (2008). A new paradigm in leaf-level photosynthesis: Direct and diffuse lights are not equal. Plant, Cell and Environment, 31(1), 159–164. https://doi.org/10.1111/j.1365-3040.2007.01751.x

Cai, Y., Li, G., Zou, D., Hu, S., & Shi, X. (2021). Rising nutrient nitrogen reverses the impact of temperature on photosynthesis and respiration of a macroalga Caulerpa lentillifera (Ulvophyceae, Caulerpaceae). Journal of Applied Phycology, 33(2), 1115–1123. https://doi.org/10.1007/s10811-020-02340-9

Charrier, B., Abreu, M. H., Araujo, R., Bruhn, A., Coates, J. C., De Clerck, O., Katsaros, C., Robaina, R. R., & Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. In New Phytologist (Vol. 216, Issue 4, pp. 967–975). Blackwell Publishing Ltd. https://doi.org/10.1111/nph.14728

Chen, X., Sun, Y., Liu, H., Liu, S., Qin, Y., & Li, P. (2019). Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ, 2019(1). https://doi.org/10.7717/peerj.6118

Cikoš, A. M., Šubarić, D., Roje, M., Babić, J., Jerković, I., & Jokić, S. (2022, June 1). Recent advances on macroalgal pigments and their biological activities (2016–2021). Algal Research. Elsevier B.V. https://doi.org/10.1016/j.algal.2022.102748

Estrada, J. L., Bautista, N. S., & Dionisio-Sese, M. L. (2020). Morphological variation of two common sea grapes (Caulerpa lentillifera and caulerpa racemosa) from selected regions in the Philippines. Biodiversitas, 21(5), 1823–1832. https://doi.org/10.13057/biodiv/d210508

Eviana, M., Mukhlis, A., & Azhar, F. (2024). Growth of Sea Grapes (Caulerpa lentillifera) in Laboratory-Scale Cultivation With Urea As A Single Nitrogen Nutrient. Journal of Fish Health, 4(4), 235–246. https://doi.org/10.29303/jfh.v4i4.5956

Ghedifa, A. Ben, Vega, J., Korbee, N., Mensi, F., Figueroa, F. L., & Sadok, S. (2021). Effects of light quality on the photosynthetic activity and biochemical composition of Gracilaria gracilis (Rhodophyta). Journal of Applied Phycology, 33(5), 3413–3425. https://doi.org/10.1007/s10811-021-02496-y

Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., & Brück, T. (2016, February 1). Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology. Springer Verlag. https://doi.org/10.1007/s00253-015-7144-6

Guo, H., Yao, J., Sun, Z., & Duan, D. (2015a). Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera. Chinese Journal of Oceanology and Limnology, 33(2), 410–418. https://doi.org/10.1007/s00343-015-4105-y

Guo, H., Yao, J., Sun, Z., & Duan, D. (2015b). Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). Journal of Applied Phycology, 27(2), 879–885. https://doi.org/10.1007/s10811-014-0358-7

Hasanah A., U., Mukhlis, A., & Azhar, F. (2025). The Effect of Water Exchange Intervals on the Growth of Caulerpa lentillifera. Asian Journal of Fisheries and Aquatic Research, 27(8), 47–64. https://doi.org/10.9734/ajfar/2025/v27i8976

Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11), 3107–3117. https://doi.org/10.1093/jxb/erq132

Huang, S., Li, K., Pan, Y., Yu, Y., Wernberg, T., de Bettignies, T., … Xiao, X. (2021). Artificial light source selection in seaweed production: growth of seaweed and biosynthesis of photosynthetic pigments and soluble protein. PeerJ, 9. https://doi.org/10.7717/peerj.11351

Ismail, M. F., Abdullah, F. I., Ismail, I., Karim, M. M. A., Ramaiya, S. D., Benjamin, M. A. Z., … Zakaria, M. H. (2024, October 1). Cultivation of edible Caulerpa species in Malaysia: Current status and future prospects for sustainable aquaculture. Journal of Applied Phycology. Springer Science and Business Media B.V. https://doi.org/10.1007/s10811-024-03271-5

Kang, L. K., Huang, Y. J., Lim, W. T., Hsu, P. H., & Hwang, P. A. (2020). Growth, pigment content, antioxidant activity, and phytoene desaturase gene expression in Caulerpa lentillifera grown under different combinations of blue and red light-emitting diodes. Journal of Applied Phycology, 32(3), 1971–1982. https://doi.org/10.1007/s10811-020-02082-8

Kim, J. K., Mao, Y., Kraemer, G., & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52–57. https://doi.org/10.1016/j.aquaculture.2014.10.037

Lee, H., Depuydt, S., Shin, K., De Saeger, J., Han, T., & Park, J. (2024). Interactive Effects of Blue Light and Water Turbulence on the Growth of the Green Macroalga Ulva australis (Chlorophyta). Plants, 13(2). https://doi.org/10.3390/plants13020266

Liu, J., & van Iersel, M. W. (2021). Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.619987

Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021, October 1). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology. MDPI. https://doi.org/10.3390/biology10101060

Marques, R., Cruz, S., Calado, R., Lillebø, A., Abreu, H., Pereira, R., Pitarma, B., da Silva, J. M., & Cartaxana, P. (2021). Effects of photoperiod and light spectra on growth and pigment composition of the green macroalga Codium tomentosum. Journal of Applied Phycology, 33(1), 471–480. https://doi.org/10.1007/s10811-020-02289-9

Massa, G. D., Kim, H. H., Wheeler, R. M., & Mitchell, C. A. (2008). Plant productivity in response to LED lighting. HortScience, 43(7), 1951–1956. https://doi.org/10.21273/hortsci.43.7.1951

Mitchell, C., Both, A.-J., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R., & Runkle, E. (2012). LEDs: The Future of Greenhouse Lighting! Chronica Horticulturae, 52(1), 1–9.

Mulders, K. J. M., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology, 50(2), 229–242. https://doi.org/10.1111/jpy.12173

Nishio, J. N. (2000). Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant, Cell and Environment, 23(6), 539–548. https://doi.org/10.1046/j.1365-3040.2000.00563.x

Nurkolis, F., Taslim, N. A., Qhabibi, F. R., Kang, S., Moon, M., Choi, J., Choi, M., Park, M. N., Mayulu, N., & Kim, B. (2023). Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules, 28(3). https://doi.org/10.3390/molecules28031365

Pagels, F., Bonomi-Barufi, J., Vega, J., Abdala-Díaz, R., Vasconcelos, V., Guedes, A. C., & Figueroa, F. L. (2020). Light quality triggers biochemical modulation of Cyanobium sp.—photobiology as tool for biotechnological optimization. Journal of Applied Phycology, 32(5), 2851–2861. https://doi.org/10.1007/s10811-020-02179-0

Pure Algae. (2024). Can you grow seaweed on land?. European Maritime and Fisheries Fund Report. https://www.linkedin.com/company/pure-algae-dk/

Schmid, M., Biancacci, C., Leal, P. P., & Fernandez, P. A. (2023). Editorial: Sustainable seaweed aquaculture: Current advances and its environmental implications. Frontiers in Marine Science. Frontiers Media S.A. https://doi.org/10.3389/fmars.2023.1160656

Stuthmann, L. E., Brix da Costa, B., Springer, K., & Kunzmann, A. (2023, December 1). Sea grapes (Caulerpa lentillifera J. Agardh, Chlorophyta) for human use: Structured review on recent research in cultivation, nutritional value, and post-harvest management. Journal of Applied Phycology. Springer Science and Business Media B.V. https://doi.org/10.1007/s10811-023-03031-x

Terada, R., Takaesu, M., Borlongan, I. A., & Nishihara, G. N. (2021). The photosynthetic performance of a cultivated Japanese green alga Caulerpa lentillifera in response to three different stressors, temperature, irradiance, and desiccation. Journal of Applied Phycology, 33(4), 2547–2559. https://doi.org/10.1007/s10811-021-02439-7

Terashima, I., Fujita, T., Inoue, T., Chow, W. S., & Oguchi, R. (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology, 50(4), 684–697. https://doi.org/10.1093/pcp/pcp034

Ukabi, S., Dubinsky, Z., Steinberger, Y., & Israel, A. (2013). Temperature and irradiance effects on growth and photosynthesis of Caulerpa (Chlorophyta) species from the eastern Mediterranean. Aquatic Botany, 104, 106–110. https://doi.org/10.1016/j.aquabot.2012.08.007

Wang, L., Yang, T., Pan, Y., Shi, L., Jin, Y., & Huang, X. (2023, July 1). The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms241311041

Wu, H. (2016). Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Research International, 2016. https://doi.org/10.1155/2016/7383918

Yuliyana, A., Rejeki, S., & Widowati, L. L. (2022). Pengaruh Salinitas yang Berbeda terhadap Pertumbuhan Rumput Laut Latoh (Caulerpa lentillifera) di Laboratorium Pengembangan Wilayah Pantai (LPWP) Jepara. Journal of Aquaculture Management and Technology, 3(4), 9–17. http://ejournal-1.undip.ac.id/index.php/jamt

Zhang, L., Liao, W., Huang, Y., Wen, Y., Chu, Y., & Zhao, C. (2022, December 1). Global seaweed farming and processing in the past 20 years. Food Production, Processing and Nutrition. BioMed Central Ltd. https://doi.org/10.1186/s43014-022-00103-2

Zhou, W., Wang, Y., Xu, R., Tian, J., Li, T., & Chen, S. (2025). Comparative Analysis of the Nutrient Composition of Caulerpa lentillifera from Various Cultivation Sites. Foods, 14(3). https://doi.org/10.3390/foods14030474

Author Biographies

Muhammad Prananda, University of Mataram

Alis Muhklis, University of Mataram

Sahrul Alim, University of Mataram

License

Copyright (c) 2025 Muhammad Prananda, Alis Mukhlis, Sahrul Alim

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.