Growth and Survival of Mytilopsis adamsi During Larval to Early Juvenile Transition Under Different Salinity Conditions

Pertumbuhan dan Kelangsungan Hidup Mytilopsis adamsi Selama Transisi Larva ke Juvenil Awal pada Kondisi Salinitas yang Berbeda

Authors

Dina Ahyani , Alis Muhklis , Bayu Priyambodo

Published:

2025-08-31

Issue:

Vol. 1 No. 2 (2025): August 2025

Keywords:

Mytilopsis adamsi, salinity, specific growth rate, survival rate

Articles

Downloads

How to Cite

Ahyani, D., Muhklis, A., & Priyambodo, B. (2025). Growth and Survival of Mytilopsis adamsi During Larval to Early Juvenile Transition Under Different Salinity Conditions: Pertumbuhan dan Kelangsungan Hidup Mytilopsis adamsi Selama Transisi Larva ke Juvenil Awal pada Kondisi Salinitas yang Berbeda. Indonesian Journal of Tropical Biology, 1(2), 59–65. Retrieved from https://journals.widhatulfaeha.id/index.php/ijtb/article/view/148

Abstract

Mytilopsis adamsi, a small filter-feeding bivalve mollusk, has become an invasive species cultivated in Indonesia as natural feed for economically valuable crustaceans. This study determined optimal salinity levels for growth and survival of M. adamsi during larval to early juvenile transition. Using a completely randomized design, four salinity treatments (10, 20, 30, and 40 ppt) were tested with three replicates each. Larvae were reared for 28 days with Nannochloropsis sp. and Pavlova lutheri as feed, developing from 50.4 µm to 140.17 ± 6.12 µm. Treatments at 20 and 30 ppt demonstrated optimal performance with identical specific growth rates (SGR) of 3.90% per day. Survival rates showed no significant difference (p > 0.05) between treatments, ranging from 24.6% to 27.8%, with highest values at 40 ppt (27.8 ± 0.4%). Statistical analysis revealed a quadratic relationship for SGR (y = -0.0014x² + 0.0615x + 3.2576, R² = 0.8753) with theoretical optimum at 22.0 ppt. The optimal salinity range for M. adamsi cultivation is 20–30 ppt based on growth performance. These results provide baseline data for commercial cultivation protocols and environmental management strategies.

References

M., Mickett, J. B., & Padilla-Gamiño, J. L. (2024). Phenotypic plasticity and carryover effects in an ecologically important bivalve in response to changing environments. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1178507

APHA (American Public Health Association). (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association, American Water Works Association, Water Environment Federation, 1496.

Cochran, W. (1977). Sampling Techniques 3rd Edition, New York : John Wiley and Sons. In Sampling Techniques 3rd Edition (Vol. 3).

Fernandes, M. R., Salgueiro, F., Miyahira, I. C., & Caetano, C. H. S. (2018). mtDNA analysis of Mytilopsis (Bivalvia, Dreissenidae) invasion in Brazil reveals the existence of two species. Hydrobiologia, 817(1), 97–110. https://doi.org/10.1007/s10750-018-3602-3

Fernandes, M. R., Suga, C. M., Marques, M. M., & Salgueiro, F. (2024). From port to port: the invasive bivalve Mytilopsis cf. sallei (Dreissenidae) is confirmed in southeastern Brazil. Molluscan Research, 44(3), 229–240. https://doi.org/10.1080/13235818.2024.2330109

Gaag, M. Van Der, Velde, G. Van Der, & Leuven, R. S. E. W. (2017). Settlement, Seasonal Size Distribution, and Growth of the Invasive Bivalve Mytilopsis leucophaeata (Conrad, 1831) (Dreissenidae) in Relation to Environmental Factors. Journal of Shellfish Research, 36(2), 417–426. https://doi.org/10.2983/035.036.0214

Haider, F., Sokolov, E. P., Timm, S., Hagemann, M., Blanco Rayón, E., Marigómez, I., Izagirre, U., & Sokolova, I. M. (2019). Interactive effects of osmotic stress and burrowing activity on protein metabolism and muscle capacity in the soft shell clam Mya arenaria. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 228, 81–93. https://doi.org/10.1016/j.cbpa.2018.10.022

Huisman, E. A. (1976). Food conversion efficiencies at maintenance and production levels for carp, Cyprinus carpio L., and rainbow trout, Salmo gairdneri Richardson. Aquaculture, 9(C). https://doi.org/10.1016/0044-8486(76)90068-5

Juniyastuti, S. I., Abidin, Z., & Priyambodo, B. (2025). Comparison of growth and survival of brown mussel (Mytilopsis adamsi) cultured in estuarine and marine waters. Asian Journal of Fisheries and Aquatic Research, 27(7), 107–117. https://doi.org/https://doi.org/10.9734/ajfar/2025/v27i7955

Khanthasimachalerm, N., & Wangkulangkul, K. (2024). View of Does Salinity Gradient Affect Distributions of Byssally-attached Bivalves in Songkhla Lake, the Largest Estuary in Thailand_. Journal of Fisheries and Environment, 48(2). https://doi.org/https://doi.org/10.3391/ai.2024.19.2.124566

Marelli, D. C. (2021). Incorrect identification of invasive Indo-Pacific member of the bivalve genus Mytilopsis can affect construction of molecular phylogenies. In Journal of Sea Research (Vol. 175). Elsevier B.V. https://doi.org/10.1016/j.seares.2021.102084

Neto, A. D. S. M., Caetano, C. H. S., & Cardoso, R. S. (2020). Population Dynamics and Secondary Production of the Invasive Bivalve Mytilopsis leucophaeata (Bivalvia, Dreissenidae) in Lagoa Rodrigo de Freitas, Rio de Janeiro, Brazil. Journal of Shellfish Research, 39(3), 655–669. https://doi.org/10.2983/035.039.0311

Peteiro, L. G., Woodin, S. A., Wethey, D. S., Costas-Costas, D., Martínez-Casal, A., Olabarria, C., & Vázquez, E. (2018). Responses to salinity stress in bivalves: Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26706-9

Queiroz, R. N. M., da Silva, P. M., DeSouza, A. M., Silva, L. B., & Dias, T. L. P. (2020). Effects of environmental factors on the distribution of the exotic species Mytilopsis sallei (Récluz, 1849) (Bivalvia: Dreissenidae) on the Northeast coast of Brazil. Journal of Sea Research, 165. https://doi.org/10.1016/j.seares.2020.101954

Ramadhan, D. A., Mukhlis, A., & Diniariwisan, D. (2024). Effects of salinity level on the growth, filtration rate and survival of pearl oyster (Pinctada maxima) spats. Jurnal Biologi Tropis, 24(2), 718–729. https://doi.org/10.29303/jbt.v24i2.7057

Rodrigues, A. J. S., Miyahira, I. C., Rodrigues, N., Ribeiro, D., Santos, L. N., & Neves, R. A. F. (2022). Wide tolerance to environmental conditions and substrate colonization mediates the invasion of false mussels (Bivalvia: Dreissenidae) in brackish systems. Biological Invasions, 24(7), 2245–2260. https://doi.org/10.1007/s10530-022-02772-z

Rong, Y., Tang, Y., Ren, L., Taylor, W. D., Razlutskij, V., Naselli-Flores, L., Liu, Z., & Zhang, X. (2021). Effects of the filter-feeding benthic bivalve corbicula fluminea on plankton community and water quality in aquatic ecosystems: A mesocosm study. Water (Switzerland), 13(13). https://doi.org/10.3390/w13131827

Sa-Nguansil, S., & Wangkulangkul, K. (2020). Salinity tolerance in different life history stages of an invasive false mussel Mytilopsis sallei Recluz, 1849: implications for its restricted distribution. Molluscan Research, 40(3), 214–222. https://doi.org/10.1080/13235818.2020.1753902

Septiani, N., Amir, S., & Mukhlis, A. (2023). The Effect of the Interval Time Immersion in the Natural Feed Tank of Chaetoceros simplex on Growth and Survival Rate of Pearl Oyster (Pinctada maxima). Journal of Fish Health, 3(1), 1–10. https://doi.org/10.29303/jfh.v3i1.2117

Stevick, R. J., Post, A. F., & Gómez-Chiarri, M. (2021). Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-020-00066-0

Tan, K. S., & Tay, T. (2020). The invasive Caribbean Mytilopsis sallei (Bivalvia: Dreissenidae): A short review. ASEAN Journal on Science and Technology for Development, 35(1–2), 133–139. https://doi.org/10.29037/ajstd.483

van der Gaag, M., van der Velde, G., & Leuven, R. S. E. W. (2024). Matching field-based ranges in brackish water gradients with experimentally derived salinity tolerances of Conrad’s false mussel (Mytilopsis leucophaeata cochleata) and zebra mussel (Dreissena polymorpha). Aquatic Invasions, 19(2), 169–190. https://doi.org/10.3391/ai.2024.19.2.124566

van der Gaag, M., van der Velde, G., Wijnhoven, S., & Leuven, R. S. E. W. (2016). Salinity as a barrier for ship hull-related dispersal and invasiveness of dreissenid and mytilid bivalves. Marine Biology, 163(7). https://doi.org/10.1007/s00227-016-2926-7

Verween, A., Vincx, M., & Degraer, S. (2007). The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. Journal of Experimental Marine Biology and Ecology, 348(1–2), 111–120. https://doi.org/10.1016/j.jembe.2007.04.011

Warse, L. J., Diniarti, N., & Lestari, D. P. (2019). Pengaruh perbedaan rentang suhu terhadap keberhasilan pemijahan dan daya tetas telur kerang bulu (Anadara antiquata). Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 12(1), 65. https://doi.org/10.21107/jk.v12i1.5031

Author Biographies

Dina Ahyani, Universitas of Mataram

Alis Muhklis, Universitas of Mataram

Bayu Priyambodo, Lombok Marine Aquaculture Development Centre

License

Copyright (c) 2025 Ahyani Dina, Muhklis Alis , Priyambodo Bayu

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.